![]() One of the central design principles behind FrankenScore/Ooloi is modularity. There is a small core, written in Clojure, and then there are plugins which can be written in any JVM language such as Java, Kotlin, Scala, JRuby, Jython, etc. This architecture has far-reaching consequences for contributors. For instance, the open-source core can be contributed to and extended natively in Clojure – which expert Clojurians will appreciate. This way, contributors have full access to all aspects of the core engine. But if you instead want to contribute to Ooloi using its plugin architecture, you can use any JVM language and production methodology. The API you'll be using lets you focus entirely on the musical task to be accomplished. You don't even have to know about things like transactions, concurrency, or memory management. You can safely work with the powerful musical abstractions the API gives you and let the efficient engine handle the rest. And commercial entities will also appreciate that Ooloi's plugin mechanism supports paid, close-source plugins. And as there is no loss in efficiency or speed, much of the Ooloi functionality will be implemented using plugins, including advanced playback, MusicXML support, virtual instruments, tablature, jazz notation, and much more. Read more about it in the updated and extended Development Plan.
0 Comments
It's been five months since my last update on Ooloi – or FrankenScore, as it's still known in its pre-release incarnation. This silence wasn't planned; rather, it happened because life got in the way. A demanding day job, a significant career change – we had to liquidate Delegat AB and I had to find a new job as a principal-level AWS Cloud Architect – and other responsibilities all conspired to slow Ooloi's momentum. I won't bore you with excuses – sometimes one simply must pause to change course, and I really needed to devote all time and mind space to finding what I hope is my final employment. Now that I've secured a great position with HiQ in Stockholm, I can return to Ooloi with full force. Where We StandDespite the public quiet, work has continued, albeit at a more measured pace. The foundational architecture – that robust, high-performance platform for ACID-compliant transactions – remains solid. I've made incremental improvements to the core API, particularly in how it handles complex musical structures through our vector path descriptor (VPD) system. The polymorphic API is now fully mature, offering a consistent interface whether used internally in the backend or remotely by the frontend. This uniformity will prove invaluable both for our own development and for future JVM plugin creators, who'll benefit from the significant abstraction it provides. File persistence using Nippy has been fully implemented, creating a solid foundation for saving and loading pieces. This might seem a mundane milestone, but anyone who's worked with complex software knows that solid persistence mechanisms are like plumbing – unglamorous but absolutely essential, and you certainly notice when they're missing. File persistence, like high-quality printing, should be implemented early in the development cycle as they can be devilishly difficult to just tack on later. They also provide an acid test for the whole architecture. A Bit of ReflectionFive months of relative silence offers time to think. Perhaps there's value in stepping back from the constant pressure to show visible output. In such moments, the architecture is refined not through frantic coding but through careful consideration. The journey from Igor Engraver to Ooloi spans decades, and a few months of slower progress hardly register on such a timescale. What matters is that the vision remains clear and the foundation solid. After all, the whole purpose of the Ooloi project is not to "disrupt the market". Like Octavia Butler's ooloi aliens, we're neither aggressive nor competitive. What is important, however, is doing this right using modern tools. The idea is to create an architecture and a platform that'll last and that musicians and publishers will want to use. It's also to provide a powerful environment that can be easily extended through any JVM language. Ooloi has a tight, lean and efficient core, organically and seamlessly augmented by a flora of plugins for any vertical. This would include jazz, early music, tablature, etc - but also commercial plugins to support things like virtual instruments, extremely intelligent playback, or perhaps GenAI used for musical purposes. The idea is to shift the initiative to the users, not to a central committee trying to anticipate user needs. Ooloi is designed for flexibility and efficiency. Uniting these two aspects sucessfully requires careful architectural design. (And a language like Clojure for the core and the JVM for the plugins.) Community BuildingWith the core architecture stabilising, I'm thinking more about community. Ooloi is intended as an open-source project, a collaborative effort that will benefit from diverse perspectives and expertise. The extensive documentation work completed earlier – including the architecture decision records, READMEs, and technical specifications – was not merely for my benefit. It prepares the ground for future collaborators, creating a clear map of the territory for those who will join us. The website, this blog, and the growing collection of documentation all serve as beacons for those who might be interested in contributing. They signal our commitment to transparency and proper communication – essential ingredients for any successful open-source project. Looking ForwardSo what comes next? The gRPC layer for communication between frontend and backend remains a priority. This is the bridge that will allow the beautiful architecture we've built to manifest in a usable form for musicians and composers. Following that, the initial frontend work – that "Hello World" window that will serve as proof of concept – beckons. While the backend architecture is undoubtedly important, it's through the frontend that users will experience Ooloi. Getting this right is crucial. The SMuFL integration for standard music font layout continues to progress, ensuring that Ooloi will render beautiful notation with consistency across platforms. Challenges and OpportunitiesEvery project faces challenges, and Ooloi is no exception. Time constraints remain the most significant hurdle, as this is still predominantly a one-person effort with limited hours available. There's also the natural tension between getting it right and getting it done. The perfectionist tendency can be both a blessing and a curse in software development. While it drives us towards excellence, it can also delay progress if not properly balanced. The task here is to create a platform for music processing and notation. This balance has to be exactly right so that contributors can treat Ooloi like a music notation OS rather than just a bunch of API endpoints. I think the balance is right; it's looking very promising. Yet within these challenges lie opportunities. The time spent refining the architecture will pay dividends in the long run, creating a more solid foundation for future development. A Call to Potential CollaboratorsAs Ooloi progresses toward its eventual public release, I'm increasingly aware of the need for collaborators. If you're a Clojure programmer with an interest in music notation, or a musician with programming skills, your perspective could be invaluable. While we're not yet at the point of opening the repository – though a "soft release" isn't out of the question – I welcome conversations with those who might be interested in contributing once we do. The journey from FrankenScore to Ooloi – from private project to open-source collaboration – will be richer for having diverse voices involved from the early stages. Closing ThoughtsFive months of comparative quiet doesn't mean I've abandoned ship; it simply reflects the natural ebb and flow of a project undertaken alongside life's other commitments. Ooloi continues to grow, perhaps not as swiftly as in those heady initial weeks, but with steady purpose nonetheless.
I'm reminded of how musical compositions themselves develop – sometimes in great creative bursts, other times through careful refinement of existing material. Both approaches have their place. To those following Ooloi's progress, thank you for your patience. The work continues, and updates will come more regularly as we approach the milestone of public release. The vision of a modern, efficient, and elegant music notation system – one built on sound architectural principles and open to community collaboration – remains as compelling as ever. Until next time (which will be considerably less than five months hence), / Peter In the past weeks, I've been focused on FrankenScore's core architecture. I'm not rushing to open-source this; instead, I'm taking my time to craft a solid platform that will do the heavy lifting for future users and collaborators. All the complexities involving data representation and manipulation in a multi-threaded environment must be solved so collaborators can concentrate on the essentials. Clojure is ideal here, just as Common Lisp was the clear choice for Igor Engraver back in 1996.
Key developments: 1. The API is now fully polymorphic and can be used in the same way internally in the backend as in the frontend. There is a system of pointerless vector path descriptors (VPDs) implemented for this purpose that all API operations can accept as part of their polymorphic setup. I wouldn't be surprised if core collaborators will use the API for internal purposes as well, as it is highly efficient and exposes the underlying functionality in an abstract, domain-specific way. There should be little need to go directly to the underlying data structures, at least not for speed - and certainly not for expressivity. This also bodes well for plugin development in other languages than Clojure, which is an important feature. 2. This beast is fast. Clojure's STM facilities ensure high-speed ACID-compliant transactions with automatic retries. They are also composable. This means that plugins can bombard the backend with hundreds of thousands of mutation requests, for instance to implement MusicXML, with the same efficiency as the pure Clojure backend. 3. Piece Manager Implementation: There's now a Piece Manager, providing functions for storing, retrieving, and resolving pieces from IDs. This allows for multiple clients to work simultaneously on the same piece in a distributed arrangement. The FrankenScore backend can run in the cloud with multiple people collaborating on the same piece. Multiple pieces can be open simultaneously to allow copy-and-paste operations between them. My next steps involve implementing file persistence (saving and opening music files), as well as tackling printing. These are foundational features, not mere add-ons. Persistence forces a clear definition of the data model and enables easier testing. Printing isn't just about output; it's about representation and serves as a sanity check on the entire system design. Both will likely inform further refinements of the core architecture, potentially revealing oversights or opportunities for optimisation. Additionally, sequencing is a crucial part of the core platform. And by sequencing I mean support for converting musical representations to timed sound events - though not necessarily via MIDI; a software synth may use direct means of control, for instance. The core sequencer can be used by plugins to generate MIDI, or to input MIDI, but the actual MIDI implementation will be done in the plugin layer. But that's a whole blog post of its own. ![]() The past four weeks have been a whirlwind of productivity. Enjoying a deep creative flow, I've really been wind-surfing through parentheses as I've been working almost around the clock on FrankenScore. The results have been surprising:
This initial rush has successfully got FrankenScore off the ground, building a strong foundation in record time. However, as my holiday draws to its close and my day job with Delegat AB resumes, the pace will inevitably slow down a little. The timeline for releasing FrankenScore as open source depends on several factors, including the presence of internal collaborators before the public release. While the foundational work is largely complete, the project will continue to evolve at a steadier pace. If I'm left entirely to my own devices without any pre-release assistance, I should say the public open source release of Ooloi 0.x will happen in about a year's time. With collaborators, in about six months or so. But this is difficult to gauge with any exactness, as there are so many variables involved. Also, after going public, remember Ooloi won't be finished by any means. That's when the journey begins in earnest, travelling the distance from Ooloi 0.x to 1.0. But then we'll be travelling as a group. Anyway, there'll be regular status and road map updates on this blog. I'll keep you posted. FrankenScore is still private. There is a number of things that need to be in place before the project can go public and I can start inviting collaborators, so let's touch a little on names, releases and versions.
At this stage I'm finalising the robust, high-performance platform for ACID-compliant transactions which forms the basis of everything in FrankenScore and is manifested through the backend API. FrankenScore becomes Ooloi when released as open source. But the first release doesn't need to be Ooloi 1.0, which by definition would be feature-complete. In fact, it should be Ooloi 0.n with an n as low as possible, meaning it's best to go public as early as possible, yet feature-complete enough so Ooloi's promise is immediately apparent. Here's a very rough project plan:
So, point 9 represents the point where the project goes public and Ooloi 0.n appears. It remains to be seen how feature-complete the notation must be to confidently take that step. However. There might of course be room for collaborators in the project before the public release as open source, as there are points in the above list that cover isolated features that could be delegated to an experienced Clojure programmer. Hmm. Let's think about that. |
AuthorPeter Bengtson –composer, organist, programmer, cloud architect. Currently windsurfing through parentheses. Archives
March 2025
Categories
All
|
|
FrankenScore is a modern, open-source music notation software designed to handle complex musical scores with ease. It is designed to be a flexible and powerful music notation software tool providing professional, extremely high-quality results. The core functionality includes inputting music notation, formatting scores and their parts, and printing them. Additional features can be added as plugins, allowing for a modular and customizable user experience.
|