Claude & Clojure![]() It's no secret that I use Generative AI, specifically Claude Sonnet, to assist with the Ooloi project. I use it for writing Clojure tests TDD fashion, for generating Clojure code, for generating documentation, READMEs, architectural design documents and much more. Above all, I use Claude for exploring architectural strategies before coding even begins. It's somewhat reminiscent of pair programming in that sense: I'd never just task GenAI with generating anything I wouldn't scrutinise very carefully. This approach works very well and allows me to quickly pick up on good design patterns and best practices for Clojure. Claude & Python![]() Overall, working with Claude on Clojure code works surprisingly well. However, this is not the case when I try to involve Claude for coding in Python, the main language I use as an AWS Solutions Architect. Generative AI struggles with creating meaningful Python tests and code – especially tests, which rarely work at all. This hampers its use as an architectural discussion partner and a TDD assistant. In fact, I've given up trying to use Generative AI for coding in Python. DifferencesI have a deep background in Common Lisp and CLOS, dating back to the 1970s. I've written Common Lisp compilers and interpreters, as many Lispers did in those days. The standard practice was to write a small kernel in assembler or C or some other low-level language, and then use it to write an optimising compiler on top of it to replace the kernel in an iterative fashion, sometimes using transformations of source code based on lambda calculus. (I still remember that paper by Guy Steele.) I see Common Lisp essentially as a big bag of good-to-haves (a really excellent one, mind you). As such, it was designed by committees over a period of decades. Clojure, on the other hand, is much tighter and rests solidly on consistently applied computer science design principles. Common Lisp is pragmatic and eclectic and thus somewhat sprawling in design. Clojure, in comparison, is smaller and much more focussed, even opinionated in nature, and for clear reasons. People attracted to Common Lisp and Clojure tend to be pretty well versed in computer science, especially Clojurians who generally have a good understanding of functional programming and immutable data structure concepts. Thus, the public code "out there" on sites like GitHub tends to be fairly advanced and of high quality. Python is an entirely different ballgame. It's one of the most commonly used languages today, and the public code base is absolutely enormous. This also means that the quality of that public code varies considerably. Also, Python is not functional at heart, and its data structures aren't immutable: side effects is the name of the game. Python programmers, though much greater in number than Clojure programmers, range from script kids to computer scientists. Thus, public Python code is much more all over the place and of varying quality. This may make it harder for a large language model to reason about. I wondered whether these differences accounted for the discrepancies in the usefulness of Claude and other LLMs as coding assistants in Clojure and Python. Asking ClaudeSo I decided to ask Claude 3.7 itself. I shared the Clojure codebase with it and asked why it thought results were so much better for Clojure than for Python. This is what it said:
It then continued, quoting the code base:
I guess this answers my question about Clojure vs Python. It's not just the functional and immutable aspects of Clojure, it's also specifying the domain stringently through design, architectural discussons, specs, and tests. The Ooloi project in particularWith all that out of the way, I then went on to describe how I use Claude as a discussion partner before code is generated, and the TDD approach I'm using where the tests of course describe the domain. Claude was almost embarrassingly enthusiastic:
I continued: "I also use Claude to create ADRs, READMEs, introductions for newcomers, Dev plans, etc. I'm quite open about this; transparency is paramount in an open-source project, and the idea is to facilitate collaborators' understanding of the Ooloi project as much as possible. This means that adherence to best practices, the use of sane architecture, abstracting away the complex stuff without compromising on performance or flexibility, etc, all are central." Claude responded:
We then went on discussing open-source strategies, tutorials and onboarding materials for contributors and much more which I'll spare you from for now. Finally, I asked it to summarise its views on Ooloi as a project:
Now, this level of enthusiasm and praise from an anthropomorphic-presenting LLM (essentially a glorified Markov chain) always makes me deeply suspicious – I'm absolutely allergic to toxic positivity, especially the kind from the USA – so I asked it "Are you sure you're not overly enthusiastic just to please me?". It replied:
I then asked Claude 3.7 to comment on my journey from Common Lisp to Clojure and on the influence from Common Lisp and CLOS on Ooloi:
And finally, I just couldn't resist asking: "What would Rich Hickey say?"
I guess that hypothetical assessment is good enough for me at this point. Still not quite sure that Claude isn't giving me a friendly reach-around, though... ;)
0 Comments
![]() When I started programming in Lisp in 1979, after reading an article in BYTE Magazine, I hardly imagined that 45 years later I'd be embarking on a new Lisp adventure. Yet here we are, with FrankenScore (to be renamed Ooloi upon open-source release) – a modern music notation software built with Clojure. It's a project that brings together all my lifelong passions: music, programming, and the pursuit of elegant solutions to complex problems. The Path from Common Lisp to Clojure![]() My journey with Lisp began in an era when optimising Common Lisp compilers were cutting-edge technology. I cut my teeth implementing Common Lisp interpreters and compilers (as one did in those days), delving into the intricacies of a truly original programming language. This experience shaped my understanding of what a powerful, flexible programming language could be. And now in 2024 I find myself in the world of Clojure, a modern Lisp dialect that runs on the Java Virtual Machine. The transition feels both familiar and novel. Clojure's emphasis on immutability and its handling of concurrency through Software Transactional Memory (STM) aligns with the functional programming principles I've long appreciated in Lisp. But it's not just about the language. The ecosystem around Clojure – the JVM, the interoperability with Java libraries, the rich set of tools and frameworks – provides a robust foundation that we could only dream of back in the Common Lisp days. CLOS Thinking in a Clojure World![]() One of the more interesting aspects of this transition has been adapting CLOS-style thinking to Clojure's more data-centric approach. CLOS, with its powerful multiple inheritance and method combination features, encouraged a certain way of modelling problems. In FrankenScore, I've found myself reaching for these familiar patterns, but implementing them in Clojure's more functional style. For instance, the use of Clojure's protocols and multimethods, combined with hierarchies and the Methodical library, allows us to achieve CLOS-like polymorphism. It's a different approach, but one that feels natural once you embrace Clojure's philosophy. Clojure's deliberate avoidance of traditional object-oriented features felt immediately familiar and refreshing. It resonates with CLOS's approach, which many, including myself, have long regarded as transcending traditional OOP. Composition over inheritance, a principle I always valued even in the CLOS days, is not just a best practice in Clojure but the very fabric of its design philosophy. This alignment between CLOS's advanced features and Clojure's functional paradigm makes the transition feel natural and even inevitable. Changes in ThinkingPerhaps the most significant shift has been in embracing Clojure's emphasis on immutable data structures and pure functions. While these concepts weren't foreign in Common Lisp, they're central to Clojure's design. This shift encourages a style of programming that's inherently more thread-safe and easier to reason about – crucial for a complex application like FrankenScore. Another major change has been adapting to Clojure's more minimalist standard library compared to Common Lisp. This has led to a greater appreciation for carefully chosen, interoperable libraries and a more modular design approach. SimilaritiesDespite the differences, there are of course similarities in the overall approach. The emphasis on interactive development, the power of macros for domain-specific languages and the elimination of boilerplate code, plus the satisfaction of working in a dynamic, expressive language – these are all as present in my Clojure work as they were in my Common Lisp days. Moreover, the focus on solving complex problems through abstraction and composition remains. Whether it's CLOS or Clojure, the goal is still to create systems that are powerful, flexible, and pleasant to work with. Closing ThoughtsThis journey from Common Lisp to Clojure, from Igor Engraver to FrankenScore/Ooloi, is both challenging and rewarding. It's a testament to the enduring power of Lisp's ideas and the continued evolution of programming languages.
As I continue to develop FrankenScore, I'm captivated by the possibilities that Clojure and its ecosystem offer. While creating a powerful music notation software is the immediate goal, the project's scope extends far beyond that. It's an exploration of the synergies between music, technology, and open-source collaboration – a playground where these elements intersect and interact in novel ways. To those considering a similar journey, I'd say: embrace the change, but don't forget the lessons of the past. The parentheses may look familiar, but the world inside them is ever-evolving. As I windsurf through parentheses on my holiday, reviving the spirit of Igor Engraver in the form of FrankenScore, I'm struck by a profound realisation: this is how programming should always feel. Free. Uplifting. Intellectually stimulating. A far cry from being shackled to the oars of enterprise galleys, with some middle manager shouting "ATTACK SPEED!" at bewildered code monkeys. But why should this freedom be a holiday exception? As programmers (not "developers," please!), we should be grounded in computer science thinking. We need to regularly return to these ancient founts of wisdom, like Lisp, and apply their lessons to our everyday work. Otherwise, we're just highly paid button-pushers in a digital sweatshop. Remember when computer science curricula started with Scheme? It wasn't about the language; it was about learning to think algorithmically. Then Oracle, in its infinite wisdom (read: hunger for "cannon fodder"), saw Scheme replaced by Java Enterprise. And thus began the great shitshow that's lasted for decades. Yet, for all its faults, we must tip our hats to Java for gifting us the JVM. And here's where Clojure enters, marrying Lisp's elegance with the JVM's robustness and interoperability. It's like finding out your eccentric uncle and strait-laced aunt had a brilliant love child. But thanks to the JVM, your weird uncle can now fit into the enterprise world. Diving into Clojure led me to Rich Hickey's talks. The man veers into philosophical territory faster than a Silicon Valley startup pivots to blockchain. He ponders things like what names are, and why we use them - essential musings for any first-class programmer. It reminds me of my friend Niklas Derouche, architect and coder extraordinaire, who insists you must read Derrida to be a proper architect. Because nothing says "I understand this codebase" like a healthy dose of deconstruction theory. And he is right. Make no mistake. In three weeks of holiday hacking, I've made more progress and felt more fulfilled than in months of enterprise work. It's a stark reminder of what's possible when we shed unnecessary constraints and return to first principles. So, fellow coders, I challenge you: When was the last time you felt truly free in your programming? Perhaps it's time we all took a holiday to rediscover the Lisp arts. Who knows, you might just find your programming parentheses - I mean, paradigms - shifted. P.S. If you're about to comment that 'modern' languages and frameworks are just as good, save your breath. I'd sooner believe in the tooth fairy than in the supposed superiority of JavaScript or the 'agility' of SAFe. P.P.S. If you missed the Ben Hur reference (you uncultured git), this is sprint execution according to SAFe, with the CTO watching: |
AuthorPeter Bengtson –composer, organist, programmer, cloud architect. Currently windsurfing through parentheses. Archives
March 2025
Categories
All
|
|
FrankenScore is a modern, open-source music notation software designed to handle complex musical scores with ease. It is designed to be a flexible and powerful music notation software tool providing professional, extremely high-quality results. The core functionality includes inputting music notation, formatting scores and their parts, and printing them. Additional features can be added as plugins, allowing for a modular and customizable user experience.
|