Claude & Clojure![]() It's no secret that I use Generative AI, specifically Claude Sonnet, to assist with the Ooloi project. I use it for writing Clojure tests TDD fashion, for generating Clojure code, for generating documentation, READMEs, architectural design documents and much more. Above all, I use Claude for exploring architectural strategies before coding even begins. It's somewhat reminiscent of pair programming in that sense: I'd never just task GenAI with generating anything I wouldn't scrutinise very carefully. This approach works very well and allows me to quickly pick up on good design patterns and best practices for Clojure. Claude & Python![]() Overall, working with Claude on Clojure code works surprisingly well. However, this is not the case when I try to involve Claude for coding in Python, the main language I use as an AWS Solutions Architect. Generative AI struggles with creating meaningful Python tests and code – especially tests, which rarely work at all. This hampers its use as an architectural discussion partner and a TDD assistant. In fact, I've given up trying to use Generative AI for coding in Python. DifferencesI have a deep background in Common Lisp and CLOS, dating back to the 1970s. I've written Common Lisp compilers and interpreters, as many Lispers did in those days. The standard practice was to write a small kernel in assembler or C or some other low-level language, and then use it to write an optimising compiler on top of it to replace the kernel in an iterative fashion, sometimes using transformations of source code based on lambda calculus. (I still remember that paper by Guy Steele.) I see Common Lisp essentially as a big bag of good-to-haves (a really excellent one, mind you). As such, it was designed by committees over a period of decades. Clojure, on the other hand, is much tighter and rests solidly on consistently applied computer science design principles. Common Lisp is pragmatic and eclectic and thus somewhat sprawling in design. Clojure, in comparison, is smaller and much more focussed, even opinionated in nature, and for clear reasons. People attracted to Common Lisp and Clojure tend to be pretty well versed in computer science, especially Clojurians who generally have a good understanding of functional programming and immutable data structure concepts. Thus, the public code "out there" on sites like GitHub tends to be fairly advanced and of high quality. Python is an entirely different ballgame. It's one of the most commonly used languages today, and the public code base is absolutely enormous. This also means that the quality of that public code varies considerably. Also, Python is not functional at heart, and its data structures aren't immutable: side effects is the name of the game. Python programmers, though much greater in number than Clojure programmers, range from script kids to computer scientists. Thus, public Python code is much more all over the place and of varying quality. This may make it harder for a large language model to reason about. I wondered whether these differences accounted for the discrepancies in the usefulness of Claude and other LLMs as coding assistants in Clojure and Python. Asking ClaudeSo I decided to ask Claude 3.7 itself. I shared the Clojure codebase with it and asked why it thought results were so much better for Clojure than for Python. This is what it said:
It then continued, quoting the code base:
I guess this answers my question about Clojure vs Python. It's not just the functional and immutable aspects of Clojure, it's also specifying the domain stringently through design, architectural discussons, specs, and tests. The Ooloi project in particularWith all that out of the way, I then went on to describe how I use Claude as a discussion partner before code is generated, and the TDD approach I'm using where the tests of course describe the domain. Claude was almost embarrassingly enthusiastic:
I continued: "I also use Claude to create ADRs, READMEs, introductions for newcomers, Dev plans, etc. I'm quite open about this; transparency is paramount in an open-source project, and the idea is to facilitate collaborators' understanding of the Ooloi project as much as possible. This means that adherence to best practices, the use of sane architecture, abstracting away the complex stuff without compromising on performance or flexibility, etc, all are central." Claude responded:
We then went on discussing open-source strategies, tutorials and onboarding materials for contributors and much more which I'll spare you from for now. Finally, I asked it to summarise its views on Ooloi as a project:
Now, this level of enthusiasm and praise from an anthropomorphic-presenting LLM (essentially a glorified Markov chain) always makes me deeply suspicious – I'm absolutely allergic to toxic positivity, especially the kind from the USA – so I asked it "Are you sure you're not overly enthusiastic just to please me?". It replied:
I then asked Claude 3.7 to comment on my journey from Common Lisp to Clojure and on the influence from Common Lisp and CLOS on Ooloi:
And finally, I just couldn't resist asking: "What would Rich Hickey say?"
I guess that hypothetical assessment is good enough for me at this point. Still not quite sure that Claude isn't giving me a friendly reach-around, though... ;)
0 Comments
![]() When I started programming in Lisp in 1979, after reading an article in BYTE Magazine, I hardly imagined that 45 years later I'd be embarking on a new Lisp adventure. Yet here we are, with FrankenScore (to be renamed Ooloi upon open-source release) – a modern music notation software built with Clojure. It's a project that brings together all my lifelong passions: music, programming, and the pursuit of elegant solutions to complex problems. The Path from Common Lisp to Clojure![]() My journey with Lisp began in an era when optimising Common Lisp compilers were cutting-edge technology. I cut my teeth implementing Common Lisp interpreters and compilers (as one did in those days), delving into the intricacies of a truly original programming language. This experience shaped my understanding of what a powerful, flexible programming language could be. And now in 2024 I find myself in the world of Clojure, a modern Lisp dialect that runs on the Java Virtual Machine. The transition feels both familiar and novel. Clojure's emphasis on immutability and its handling of concurrency through Software Transactional Memory (STM) aligns with the functional programming principles I've long appreciated in Lisp. But it's not just about the language. The ecosystem around Clojure – the JVM, the interoperability with Java libraries, the rich set of tools and frameworks – provides a robust foundation that we could only dream of back in the Common Lisp days. CLOS Thinking in a Clojure World![]() One of the more interesting aspects of this transition has been adapting CLOS-style thinking to Clojure's more data-centric approach. CLOS, with its powerful multiple inheritance and method combination features, encouraged a certain way of modelling problems. In FrankenScore, I've found myself reaching for these familiar patterns, but implementing them in Clojure's more functional style. For instance, the use of Clojure's protocols and multimethods, combined with hierarchies and the Methodical library, allows us to achieve CLOS-like polymorphism. It's a different approach, but one that feels natural once you embrace Clojure's philosophy. Clojure's deliberate avoidance of traditional object-oriented features felt immediately familiar and refreshing. It resonates with CLOS's approach, which many, including myself, have long regarded as transcending traditional OOP. Composition over inheritance, a principle I always valued even in the CLOS days, is not just a best practice in Clojure but the very fabric of its design philosophy. This alignment between CLOS's advanced features and Clojure's functional paradigm makes the transition feel natural and even inevitable. Changes in ThinkingPerhaps the most significant shift has been in embracing Clojure's emphasis on immutable data structures and pure functions. While these concepts weren't foreign in Common Lisp, they're central to Clojure's design. This shift encourages a style of programming that's inherently more thread-safe and easier to reason about – crucial for a complex application like FrankenScore. Another major change has been adapting to Clojure's more minimalist standard library compared to Common Lisp. This has led to a greater appreciation for carefully chosen, interoperable libraries and a more modular design approach. SimilaritiesDespite the differences, there are of course similarities in the overall approach. The emphasis on interactive development, the power of macros for domain-specific languages and the elimination of boilerplate code, plus the satisfaction of working in a dynamic, expressive language – these are all as present in my Clojure work as they were in my Common Lisp days. Moreover, the focus on solving complex problems through abstraction and composition remains. Whether it's CLOS or Clojure, the goal is still to create systems that are powerful, flexible, and pleasant to work with. Closing ThoughtsThis journey from Common Lisp to Clojure, from Igor Engraver to FrankenScore/Ooloi, is both challenging and rewarding. It's a testament to the enduring power of Lisp's ideas and the continued evolution of programming languages.
As I continue to develop FrankenScore, I'm captivated by the possibilities that Clojure and its ecosystem offer. While creating a powerful music notation software is the immediate goal, the project's scope extends far beyond that. It's an exploration of the synergies between music, technology, and open-source collaboration – a playground where these elements intersect and interact in novel ways. To those considering a similar journey, I'd say: embrace the change, but don't forget the lessons of the past. The parentheses may look familiar, but the world inside them is ever-evolving. In the past weeks, I've been focused on FrankenScore's core architecture. I'm not rushing to open-source this; instead, I'm taking my time to craft a solid platform that will do the heavy lifting for future users and collaborators. All the complexities involving data representation and manipulation in a multi-threaded environment must be solved so collaborators can concentrate on the essentials. Clojure is ideal here, just as Common Lisp was the clear choice for Igor Engraver back in 1996.
Key developments: 1. The API is now fully polymorphic and can be used in the same way internally in the backend as in the frontend. There is a system of pointerless vector path descriptors (VPDs) implemented for this purpose that all API operations can accept as part of their polymorphic setup. I wouldn't be surprised if core collaborators will use the API for internal purposes as well, as it is highly efficient and exposes the underlying functionality in an abstract, domain-specific way. There should be little need to go directly to the underlying data structures, at least not for speed - and certainly not for expressivity. This also bodes well for plugin development in other languages than Clojure, which is an important feature. 2. This beast is fast. Clojure's STM facilities ensure high-speed ACID-compliant transactions with automatic retries. They are also composable. This means that plugins can bombard the backend with hundreds of thousands of mutation requests, for instance to implement MusicXML, with the same efficiency as the pure Clojure backend. 3. Piece Manager Implementation: There's now a Piece Manager, providing functions for storing, retrieving, and resolving pieces from IDs. This allows for multiple clients to work simultaneously on the same piece in a distributed arrangement. The FrankenScore backend can run in the cloud with multiple people collaborating on the same piece. Multiple pieces can be open simultaneously to allow copy-and-paste operations between them. My next steps involve implementing file persistence (saving and opening music files), as well as tackling printing. These are foundational features, not mere add-ons. Persistence forces a clear definition of the data model and enables easier testing. Printing isn't just about output; it's about representation and serves as a sanity check on the entire system design. Both will likely inform further refinements of the core architecture, potentially revealing oversights or opportunities for optimisation. Additionally, sequencing is a crucial part of the core platform. And by sequencing I mean support for converting musical representations to timed sound events - though not necessarily via MIDI; a software synth may use direct means of control, for instance. The core sequencer can be used by plugins to generate MIDI, or to input MIDI, but the actual MIDI implementation will be done in the plugin layer. But that's a whole blog post of its own. 25 years ago, in the last millennium, we created Igor Engraver, a revolutionary music notation software. To promote our work, we printed t-shirts that showcased our dual perspectives: the musician's view and the developer's view. On one side of the t-shirt, we had beautifully printed sheet music titled "Your View." On the other side, titled "Our View," we displayed a piece of code—a higher-order function for creating a transposer function in Common Lisp. Fast forward to today, as I embark on revivifying these ideas as the open source project "FrankenScore: a Body Resurrected", I suddenly remembered those t-shirts and the key they held to a general pitch representation covering not only diatonic and chromatic but also microtonal music and its transposition. I recalled that I had kept one of these t-shirts. After searching through my entire flat, I finally found it at the bottom of my laundry basket. Remarkably, the quality of the print has survived 25 years! I took a photo of the t-shirt and fed it into ChatGPT, leading to a fruitful conversation about the ideas behind and generality of this pitch representation. Thus: document your ideas in whatever way you want - even on t-shirts. Twenty-five years later, if the fabric and print are good enough, they may become the foundation stones on your journey of ... developmental retribution? ;) |
AuthorPeter Bengtson –composer, organist, programmer, cloud architect. Currently windsurfing through parentheses. Archives
March 2025
Categories
All
|
|
FrankenScore is a modern, open-source music notation software designed to handle complex musical scores with ease. It is designed to be a flexible and powerful music notation software tool providing professional, extremely high-quality results. The core functionality includes inputting music notation, formatting scores and their parts, and printing them. Additional features can be added as plugins, allowing for a modular and customizable user experience.
|